APPLICATION OF MACHINE LEARNING AND COMPUTER VISION FOR AIR POLLUTION INDICATORS FORECASTING AS A FACTOR OF SOCIAL WELFARE
DOI:
https://doi.org/10.32782/ecovis/2025-1-11Keywords:
machine learning, computer vision, air pollution, forecasting, social welfare, traffic monitoring, ensemble methods, environmental monitoringAbstract
A methodology for integrating computer vision technologies with ensemble machine learning methods has been developed for atmospheric air pollution forecasting based on automated traffic flow analysis. The proposed approach addresses critical environmental challenges in urban areas where transportation contributes significantly to air quality degradation, directly impacting public health and social welfare. The system architecture employs the YOLO11s model for automated recognition and classification of six vehicle categories: private cars, taxis, commercial vehicles, medium trucks, heavy trucks, and buses in complex urban traffic conditions. The ExtraTrees ensemble algorithm ensures high-precision forecasting of PM2.5 and PM10 fine particulate matter concentrations in ambient air through multi-output regression methodology. The research approach incorporates spatio-temporal traffic flow analysis, lag variable utilization for capturing temporal dependencies, and systematic hyperparameter optimization through GridSearchCV with cross-validation techniques. Data integration combines real-time traffic monitoring from computer vision systems with environmental sensor networks, creating comprehensive datasets for machine learning model training and validation. Empirical validation conducted on more than 50,000 observations demonstrates high forecasting accuracy with R² values of 0.972 for PM10 and 0.776 for PM2.5, confirming the methodology's stability and suitability for automated environmental monitoring systems in urban territories. The developed approach provides significant advantages over traditional monitoring methods, including scalability, real-time data processing capabilities, reduced operational costs, and independence from additional sensor infrastructure deployment. Research findings contribute to evidence-based environmental policy formulation and urban mobility management strategies, providing a robust foundation for sustainable urban development and environmental protection in metropolitan areas.
References
Health Effects Institute. State of Global Air 2024 : Special Report. Boston, MA : Health Effects Institute, 2024. URL: https://www.stateofglobalair.org/sites/default/files/documents/2024-06/soga-2024-report_0.pdf (дата звернення: 15.03.2025).
WHO. Billions of people still breathe unhealthy air: new WHO data. 2022. URL: https://www.who.int/news/item/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data (дата звернення: 15.03.2025).
European Environment Agency. Sustainability of Europe's mobility systems : Web report no. 01/2024. 2024. URL: https://www.eea.europa.eu/en/analysis/publications/sustainability-of-europes-mobility-systems/climate (дата звернення: 15.03.2025).
Kumar P., Morawska L., Martani C., Biskos G., Neophytou M., Di Sabatino S., Bell M., Norford L., Britter R. The rise of low-cost sensing for managing air pollution in cities. Environmental International. 2015. Vol. 75. P. 199-205. DOI: https://doi.org/10.1016/j.envint.2014.11.019
van Donkelaar A., Martin R. V., Brauer M., Hsu N. C., Kahn R. A., Levy R. C., Lyapustin A., Sayer A. M., Winker D. M. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology. 2016. Vol. 50(7). P. 3762-3772. DOI: https://doi.org/10.1021/acs.est.5b05833
Redmon J., Divvala S., Girshick R., Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016. P. 779-788. DOI: https://doi.org/10.1109/CVPR.2016.91
Geurts P., Ernst D., Wehenkel L. Extremely randomized trees. Machine Learning. 2006. Vol. 63(1). P. 3-42. DOI: https://doi.org/10.1007/s10994-006-6226-1
Zheng Y., Liu F., Hsieh H. P. U-Air: When urban air quality inference meets big data. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2013. P. 1436-1444. DOI: https://doi.org/10.1145/2487575.2488188
Karagulian F., Belis C. A., Dora C., Prüss-Ustün A. M., Bonjour S., Adair-Rohani H., Amann M. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment. 2015. Vol. 120. P. 475-483. DOI: https://doi.org/10.1016/j.atmosenv.2015.08.087
NYC Open Data. 2024. URL: https://opendata.cityofnewyork.us/data/ (дата звернення: 15.03.2025).
OpenAQ. 2024. URL: https://openaq.org/ (дата звернення: 15.03.2025).
Health Effects Institute. (2024) State of Global Air 2024. Special Report. Boston, MA: Health Effects Institute. Available at: https://www.stateofglobalair.org/sites/default/files/documents/2024-06/soga-2024-report_0.pdf (accessed March 15, 2025)
WHO. (2022) Billions of people still breathe unhealthy air: new WHO data. Available at: https://www.who.int/news/item/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data (accessed March 15, 2025)
European Environment Agency. (2024) Sustainability of Europe's mobility systems. Web report no. 01/2024. Available at: https://www.eea.europa.eu/en/analysis/publications/sustainability-of-europes-mobility-systems/climate (accessed March 15, 2025)
Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., & Britter, R. (2015) The rise of low-cost sensing for managing air pollution in cities. Environmental International, vol. 75, pp. 199-205. Available at: https://doi.org/10.1016/j.envint.2014.11.019 (accessed March 15, 2025)
van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin, A., Sayer, A. M., & Winker, D. M. (2016) Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, vol. 50(7), pp. 3762-3772. Available at: https://doi.org/10.1021/acs.est.5b05833 (accessed March 15, 2025)
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779-788. Available at: https://doi.org/10.1109/CVPR.2016.91
Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3-42. Available at: https://doi.org/10.1007/s10994-006-6226-1 (accessed March 15, 2025)
Zheng, Y., Liu, F., & Hsieh, H. P. (2013) U-Air: When urban air quality inference meets big data. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1436-1444. Available at: https://doi.org/10.1145/2487575.2488188 (accessed March 15, 2025)
Karagulian, F., Belis, C. A., Dora, C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015) Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, vol. 120, pp. 475-483. Available at: https://doi.org/10.1016/j.atmosenv.2015.08.087 (accessed March 15, 2025)
NYC Open Data. (2024) Available at: https://opendata.cityofnewyork.us/data/ (accessed March 15, 2025)
OpenAQ. (2024) Available at: https://openaq.org/ (accessed March 15, 2025)