APPLYING ARTIFICIAL NEURAL NETWORKS TO ANALYZE THE IMPACT OF ICT-SECTOR ON THE ECONOMIC GROWTH IN UKRAINE
DOI:
https://doi.org/10.32782/ecovis/2025-2-1Keywords:
ICT-sector, economic growth, artificial neural networks, economic modelingAbstract
The article analyzes the impact of the ICT sector on the economic dynamics of Ukraine, with particular attention to nonlinear interactions that cannot be fully captured by traditional econometric models. The research is guided by the hypothesis that the influence of ICT is complex and multifaceted, being transmitted through resource, financial, and monetary channels. The dataset combines World Bank World Development Indicators and statistics from the State Statistics Service of Ukraine for 2000–2023. At the first stage, OLS regression with Newey–West robust errors was applied. The results showed that ICT’s direct share in GVA was not statistically significant, but its lagged value (ICT % GVA lag1) emerged as a stable and meaningful predictor of GDP growth. At the second stage, a neural network model was implemented to account for nonlinearities and hidden interactions. The model demonstrated high predictive accuracy (MAE ≈ 5 percentage points, RMSE ≈ 5.8, MASE < 1) and revealed that ICT, gross capital formation, and military expenditure are the top three factors shaping Ukraine’s economic dynamics. The findings highlight that ICT exerts a significant nonlinear effect on macroeconomic development, often interacting with other variables through indirect channels. The confirmed hypothesis emphasizes the strategic role of the ICT sector in economic stabilization and long-term growth, underscoring the importance of policies that enhance its expansion and integration into the broader economy.
References
Eurostat. ICT sector – value added, employment and R&D. 2025. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=ICT_sector_-_value_added,_employment_and_R%26D (дата звернення: 14.09.2025).
IT Association of Ukraine. Digital Tiger 2024: The Market Power of Ukrainian IT. 2024. URL: https://itukraine.org.ua/en/digital-tiger-the-market-power-of-ukrainian-it-2024-a-research-on-the-prospects-of-ukrainian-it-in-key-global-export-markets/ (дата звернення: 14.09.2025).
Frost & Sullivan. Information and Communication Technology (ICT) in 2025: What’s Shaping Tomorrow’s Digital Landscape. 2025. URL: https://www.frost.com/growth-opportunity-news/information-communications-technology/artificial-intelligence-data-analytics/information-and-communication-technology-ict-in-2025-whats-shaping-tomorrows-digital-landscape-topgos-ictoutlook-cim-rg/ (дата звернення: 14.09.2025).
Радіонова І., Акулов О. Вплив ІТ-сектору на національну економіку: прикладний аспект. Економіка України. 2025. Т. 68, № 8 (765). С. 26–44. DOI: https://doi.org/10.15407/economyukr.2025.08.026
OECD. Nowcasting the growth rate of the ICT sector. OECD Digital Economy Papers. 2024. No. 362. URL: https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/05/nowcasting-the-growth-rate-of-the-ict-sector_8b641d8d/eb4938a0-en.pdf (дата звернення: 14.09.2025).
Hüsnüoğlu N., Oda V. Applying Artificial Neural Networks and Arima Models to Analyze the Impact of ICT on the Economic Growth in Turkey. Journal of the Knowledge Economy. 2022. Vol. 14. DOI: https://doi.org/10.1007/s13132-022-01031-9
Khodaveyrdi O., Mohandessi A., Nemati H. Study of relationship between ICT and economic growth (neural network approach). NN'09: Proceedings of the 10th WSEAS International Conference on Neural Networks. 2009. P. 25–29.
Radionova I., Fareniuk Ya. Data Science analysis for management decisionce with macro- and microeconomic uncertainty. In: Radionova I. (ed.). The economics of uncertainty: content, evaluation, and regulation: collective monograph. Tallinn: Scientific Center of Innovative Researches OU, 2022. С. 80–98. DOI: https://doi.org/10.36690/EUCER-80-98 URL: https://library.krok.edu.ua/media/library/category/monografiji/radionova_0012.pdf
Olawoyin, Anifat & Chen, Yangjuin. (2018). Predicting the Future with Artificial Neural Network. Procedia Computer Science. 140. 383-392. DOI: https://doi.org/10.1016/j.procs.2018.10.300
Cook, Thomas & Hall, Aaron. (2017). Macroeconomic Indicator Forecasting with Deep Neural Networks. The Federal Reserve Bank of Kansas City Research Working Papers. DOI: https://doi.org/10.18651/RWP2017-11
Xie, Huaqing & Xu, Xingcheng & Yan, Fangjia & Qian, Xun & Yang, Yanqing. (2024). Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact. DOI: https://doi.org/10.48550/arXiv.2409.02551
González, S.O., Delorme, F., Pilon, G., & Lamy, R.E. (2000). Neural Networks for Macroeconomic Forecasting : A Complementary Approach to Linear Regression Models. URL: https://publications.gc.ca/Collection/F21-8-2000-7E.pdf
Lazcano de Rojas, Ana & Jaramillo-Morán, Miguel & Sandubete, Julio. (2024). Back to Basics: The Power of the Multilayer Perceptron in Financial Time Series Forecasting. Mathematics. 12. 1920. DOI: https://doi.org/10.3390/math12121920
Babii, Andrii & Ghysels, Eric & Striaukas, Jonas. (2023). Econometrics of Machine Learning Methods in Economic Forecasting. DOI: https://doi.org/10.48550/arXiv.2308.10993
da Costa, Kleyton & Silva, Felipe & Cordeiro, Josiane. (2020). A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy. DOI: https://doi.org/10.48550/arXiv.2010.13259
Beltratti, Andrea & Margarita, Sergio & Terna, Pietro. (1999). Neural Networks for Economic and Financial Modelling. J. Artificial Societies and Social Simulation. 2. URL: https://www.researchgate.net/publication/220327358_Neural_Networks_for_Economic_and_Financial_Modelling
Simon Haykin, Neural Networks and Learning Machines Third Edition. URL: https://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf
World Development Indicators, WDI. URL: https://databank.worldbank.org/home.aspx
Державна служба статистики України. URL: https://www.ukrstat.gov.ua/operativ/oper_new.html
Statista. URL: https://www.statista.com/statistics/871513/worldwide-data-created/?srsltid=AfmBOoqhb9XQqYAixPbGlPD03yXIzp8hnBva2EOwiiFQX7gb6YYAtEQa
Eurostat. ICT sector – value added, employment and R&D. 2025. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=ICT_sector_-_value_added,_employment_and_R%26D (accessed: 14.09.2025).
IT Association of Ukraine. Digital Tiger 2024: The Market Power of Ukrainian IT. 2024. URL: https://itukraine.org.ua/en/digital-tiger-the-market-power-of-ukrainian-it-2024-a-research-on-the-prospects-of-ukrainian-it-in-key-global-export-markets/ (accessed: 14.09.2025).
Frost & Sullivan. Information and Communication Technology (ICT) in 2025: What’s Shaping Tomorrow’s Digital Landscape. 2025. URL: https://www.frost.com/growth-opportunity-news/information-communications-technology/artificial-intelligence-data-analytics/information-and-communication-technology-ict-in-2025-whats-shaping-tomorrows-digital-landscape-topgos-ictoutlook-cim-rg/ (accessed: 14.09.2025).
Radionova I., Akulov O. (2025). Vplyv IT-sektoru na natsionalnu ekonomiku: prykladnyi aspekt [The impact of the IT sector on the national economy: an applied aspect]. Ekonomika Ukrainy. T. 68, № 8 (765). S. 26–44. DOI: https://doi.org/10.15407/economyukr.2025.08.026
OECD. Nowcasting the growth rate of the ICT sector. OECD Digital Economy Papers. 2024. No. 362. URL: https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/05/nowcasting-the-growth-rate-of-the-ict-sector_8b641d8d/eb4938a0-en.pdf (accessed: 14.09.2025).
Hüsnüoğlu N., Oda V. (2022). Applying Artificial Neural Networks and Arima Models to Analyze the Impact of ICT on the Economic Growth in Turkey. Journal of the Knowledge Economy. Vol. 14. DOI: https://doi.org/10.1007/s13132-022-01031-9
Khodaveyrdi O., Mohandessi A., Nemati H. (2009). Study of relationship between ICT and economic growth (neural network approach). NN'09: Proceedings of the 10th WSEAS International Conference on Neural Networks. P. 25–29.
Radionova I., Fareniuk Ya. (2022). Data Science analysis for management decisionce with macro- and microeconomic uncertainty. In: Radionova I. (ed.). The economics of uncertainty: content, evaluation, and regulation: collective monograph. Tallinn: Scientific Center of Innovative Researches OU. P. 80–98. DOI: https://doi.org/10.36690/EUCER-80-98 URL: https://library.krok.edu.ua/media/library/category/monografiji/radionova_0012.pdf
Olawoyin, Anifat & Chen, Yangjuin (2018). Predicting the Future with Artificial Neural Network. Procedia Computer Science. 140. 383-392. DOI: https://doi.org/10.1016/j.procs.2018.10.300
Cook, Thomas & Hall, Aaron (2017). Macroeconomic Indicator Forecasting with Deep Neural Networks. The Federal Reserve Bank of Kansas City Research Working Papers. DOI: https://doi.org/10.18651/RWP2017-11
Xie, Huaqing & Xu, Xingcheng & Yan, Fangjia & Qian, Xun & Yang, Yanqing. (2024). Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact. DOI: https://doi.org/10.48550/arXiv.2409.02551
González, S.O., Delorme, F., Pilon, G., & Lamy, R.E. (2000). Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models. URL: https://publications.gc.ca/Collection/F21-8-2000-7E.pdf
Lazcano de Rojas, Ana & Jaramillo-Morán, Miguel & Sandubete, Julio. (2024). Back to Basics: The Power of the Multilayer Perceptron in Financial Time Series Forecasting. Mathematics. 12. 1920. DOI: https://doi.org/10.3390/math12121920
Babii, Andrii & Ghysels, Eric & Striaukas, Jonas. (2023). Econometrics of Machine Learning Methods in Economic Forecasting. DOI: https://doi.org/10.48550/arXiv.2308.10993
da Costa, Kleyton & Silva, Felipe & Cordeiro, Josiane. (2020). A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy. DOI: https://doi.org/10.48550/arXiv.2010.13259
Beltratti, Andrea & Margarita, Sergio & Terna, Pietro. (1999). Neural Networks for Economic and Financial Modelling. J. Artificial Societies and Social Simulation. 2. Available at: https://www.researchgate.net/publication/220327358_Neural_Networks_for_Economic_and_Financial_Modelling
Simon Haykin, Neural Networks and Learning Machines Third Edition. Available at: https://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf
World Development Indicators, WDI. Available at: https://databank.worldbank.org/home.aspx
Derzhavna sluzhba statystyky Ukrainy. Available at: https://www.ukrstat.gov.ua/operativ/oper_new.html
Statista. Available at: https://www.statista.com/statistics/871513/worldwide-data-created/?srsltid=AfmBOoqhb9XQqYAixPbGlPD03yXIzp8hnBva2EOwiiFQX7gb6YYAtEQa


