APPLYING ARTIFICIAL NEURAL NETWORKS TO ANALYZE THE IMPACT OF ICT-SECTOR ON THE ECONOMIC GROWTH IN UKRAINE

Authors

DOI:

https://doi.org/10.32782/ecovis/2025-2-1

Keywords:

ICT-sector, economic growth, artificial neural networks, economic modeling

Abstract

The article analyzes the impact of the ICT sector on the economic dynamics of Ukraine, with particular attention to nonlinear interactions that cannot be fully captured by traditional econometric models. The research is guided by the hypothesis that the influence of ICT is complex and multifaceted, being transmitted through resource, financial, and monetary channels. The dataset combines World Bank World Development Indicators and statistics from the State Statistics Service of Ukraine for 2000–2023. At the first stage, OLS regression with Newey–West robust errors was applied. The results showed that ICT’s direct share in GVA was not statistically significant, but its lagged value (ICT % GVA lag1) emerged as a stable and meaningful predictor of GDP growth. At the second stage, a neural network model was implemented to account for nonlinearities and hidden interactions. The model demonstrated high predictive accuracy (MAE ≈ 5 percentage points, RMSE ≈ 5.8, MASE < 1) and revealed that ICT, gross capital formation, and military expenditure are the top three factors shaping Ukraine’s economic dynamics. The findings highlight that ICT exerts a significant nonlinear effect on macroeconomic development, often interacting with other variables through indirect channels. The confirmed hypothesis emphasizes the strategic role of the ICT sector in economic stabilization and long-term growth, underscoring the importance of policies that enhance its expansion and integration into the broader economy.

References

Eurostat. ICT sector – value added, employment and R&D. 2025. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=ICT_sector_-_value_added,_employment_and_R%26D (дата звернення: 14.09.2025).

IT Association of Ukraine. Digital Tiger 2024: The Market Power of Ukrainian IT. 2024. URL: https://itukraine.org.ua/en/digital-tiger-the-market-power-of-ukrainian-it-2024-a-research-on-the-prospects-of-ukrainian-it-in-key-global-export-markets/ (дата звернення: 14.09.2025).

Frost & Sullivan. Information and Communication Technology (ICT) in 2025: What’s Shaping Tomorrow’s Digital Landscape. 2025. URL: https://www.frost.com/growth-opportunity-news/information-communications-technology/artificial-intelligence-data-analytics/information-and-communication-technology-ict-in-2025-whats-shaping-tomorrows-digital-landscape-topgos-ictoutlook-cim-rg/ (дата звернення: 14.09.2025).

Радіонова І., Акулов О. Вплив ІТ-сектору на національну економіку: прикладний аспект. Економіка України. 2025. Т. 68, № 8 (765). С. 26–44. DOI: https://doi.org/10.15407/economyukr.2025.08.026

OECD. Nowcasting the growth rate of the ICT sector. OECD Digital Economy Papers. 2024. No. 362. URL: https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/05/nowcasting-the-growth-rate-of-the-ict-sector_8b641d8d/eb4938a0-en.pdf (дата звернення: 14.09.2025).

Hüsnüoğlu N., Oda V. Applying Artificial Neural Networks and Arima Models to Analyze the Impact of ICT on the Economic Growth in Turkey. Journal of the Knowledge Economy. 2022. Vol. 14. DOI: https://doi.org/10.1007/s13132-022-01031-9

Khodaveyrdi O., Mohandessi A., Nemati H. Study of relationship between ICT and economic growth (neural network approach). NN'09: Proceedings of the 10th WSEAS International Conference on Neural Networks. 2009. P. 25–29.

Radionova I., Fareniuk Ya. Data Science analysis for management decisionce with macro- and microeconomic uncertainty. In: Radionova I. (ed.). The economics of uncertainty: content, evaluation, and regulation: collective monograph. Tallinn: Scientific Center of Innovative Researches OU, 2022. С. 80–98. DOI: https://doi.org/10.36690/EUCER-80-98 URL: https://library.krok.edu.ua/media/library/category/monografiji/radionova_0012.pdf

Olawoyin, Anifat & Chen, Yangjuin. (2018). Predicting the Future with Artificial Neural Network. Procedia Computer Science. 140. 383-392. DOI: https://doi.org/10.1016/j.procs.2018.10.300

Cook, Thomas & Hall, Aaron. (2017). Macroeconomic Indicator Forecasting with Deep Neural Networks. The Federal Reserve Bank of Kansas City Research Working Papers. DOI: https://doi.org/10.18651/RWP2017-11

Xie, Huaqing & Xu, Xingcheng & Yan, Fangjia & Qian, Xun & Yang, Yanqing. (2024). Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact. DOI: https://doi.org/10.48550/arXiv.2409.02551

González, S.O., Delorme, F., Pilon, G., & Lamy, R.E. (2000). Neural Networks for Macroeconomic Forecasting : A Complementary Approach to Linear Regression Models. URL: https://publications.gc.ca/Collection/F21-8-2000-7E.pdf

Lazcano de Rojas, Ana & Jaramillo-Morán, Miguel & Sandubete, Julio. (2024). Back to Basics: The Power of the Multilayer Perceptron in Financial Time Series Forecasting. Mathematics. 12. 1920. DOI: https://doi.org/10.3390/math12121920

Babii, Andrii & Ghysels, Eric & Striaukas, Jonas. (2023). Econometrics of Machine Learning Methods in Economic Forecasting. DOI: https://doi.org/10.48550/arXiv.2308.10993

da Costa, Kleyton & Silva, Felipe & Cordeiro, Josiane. (2020). A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy. DOI: https://doi.org/10.48550/arXiv.2010.13259

Beltratti, Andrea & Margarita, Sergio & Terna, Pietro. (1999). Neural Networks for Economic and Financial Modelling. J. Artificial Societies and Social Simulation. 2. URL: https://www.researchgate.net/publication/220327358_Neural_Networks_for_Economic_and_Financial_Modelling

Simon Haykin, Neural Networks and Learning Machines Third Edition. URL: https://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

World Development Indicators, WDI. URL: https://databank.worldbank.org/home.aspx

Державна служба статистики України. URL: https://www.ukrstat.gov.ua/operativ/oper_new.html

Statista. URL: https://www.statista.com/statistics/871513/worldwide-data-created/?srsltid=AfmBOoqhb9XQqYAixPbGlPD03yXIzp8hnBva2EOwiiFQX7gb6YYAtEQa

Eurostat. ICT sector – value added, employment and R&D. 2025. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=ICT_sector_-_value_added,_employment_and_R%26D (accessed: 14.09.2025).

IT Association of Ukraine. Digital Tiger 2024: The Market Power of Ukrainian IT. 2024. URL: https://itukraine.org.ua/en/digital-tiger-the-market-power-of-ukrainian-it-2024-a-research-on-the-prospects-of-ukrainian-it-in-key-global-export-markets/ (accessed: 14.09.2025).

Frost & Sullivan. Information and Communication Technology (ICT) in 2025: What’s Shaping Tomorrow’s Digital Landscape. 2025. URL: https://www.frost.com/growth-opportunity-news/information-communications-technology/artificial-intelligence-data-analytics/information-and-communication-technology-ict-in-2025-whats-shaping-tomorrows-digital-landscape-topgos-ictoutlook-cim-rg/ (accessed: 14.09.2025).

Radionova I., Akulov O. (2025). Vplyv IT-sektoru na natsionalnu ekonomiku: prykladnyi aspekt [The impact of the IT sector on the national economy: an applied aspect]. Ekonomika Ukrainy. T. 68, № 8 (765). S. 26–44. DOI: https://doi.org/10.15407/economyukr.2025.08.026

OECD. Nowcasting the growth rate of the ICT sector. OECD Digital Economy Papers. 2024. No. 362. URL: https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/05/nowcasting-the-growth-rate-of-the-ict-sector_8b641d8d/eb4938a0-en.pdf (accessed: 14.09.2025).

Hüsnüoğlu N., Oda V. (2022). Applying Artificial Neural Networks and Arima Models to Analyze the Impact of ICT on the Economic Growth in Turkey. Journal of the Knowledge Economy. Vol. 14. DOI: https://doi.org/10.1007/s13132-022-01031-9

Khodaveyrdi O., Mohandessi A., Nemati H. (2009). Study of relationship between ICT and economic growth (neural network approach). NN'09: Proceedings of the 10th WSEAS International Conference on Neural Networks. P. 25–29.

Radionova I., Fareniuk Ya. (2022). Data Science analysis for management decisionce with macro- and microeconomic uncertainty. In: Radionova I. (ed.). The economics of uncertainty: content, evaluation, and regulation: collective monograph. Tallinn: Scientific Center of Innovative Researches OU. P. 80–98. DOI: https://doi.org/10.36690/EUCER-80-98 URL: https://library.krok.edu.ua/media/library/category/monografiji/radionova_0012.pdf

Olawoyin, Anifat & Chen, Yangjuin (2018). Predicting the Future with Artificial Neural Network. Procedia Computer Science. 140. 383-392. DOI: https://doi.org/10.1016/j.procs.2018.10.300

Cook, Thomas & Hall, Aaron (2017). Macroeconomic Indicator Forecasting with Deep Neural Networks. The Federal Reserve Bank of Kansas City Research Working Papers. DOI: https://doi.org/10.18651/RWP2017-11

Xie, Huaqing & Xu, Xingcheng & Yan, Fangjia & Qian, Xun & Yang, Yanqing. (2024). Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact. DOI: https://doi.org/10.48550/arXiv.2409.02551

González, S.O., Delorme, F., Pilon, G., & Lamy, R.E. (2000). Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models. URL: https://publications.gc.ca/Collection/F21-8-2000-7E.pdf

Lazcano de Rojas, Ana & Jaramillo-Morán, Miguel & Sandubete, Julio. (2024). Back to Basics: The Power of the Multilayer Perceptron in Financial Time Series Forecasting. Mathematics. 12. 1920. DOI: https://doi.org/10.3390/math12121920

Babii, Andrii & Ghysels, Eric & Striaukas, Jonas. (2023). Econometrics of Machine Learning Methods in Economic Forecasting. DOI: https://doi.org/10.48550/arXiv.2308.10993

da Costa, Kleyton & Silva, Felipe & Cordeiro, Josiane. (2020). A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy. DOI: https://doi.org/10.48550/arXiv.2010.13259

Beltratti, Andrea & Margarita, Sergio & Terna, Pietro. (1999). Neural Networks for Economic and Financial Modelling. J. Artificial Societies and Social Simulation. 2. Available at: https://www.researchgate.net/publication/220327358_Neural_Networks_for_Economic_and_Financial_Modelling

Simon Haykin, Neural Networks and Learning Machines Third Edition. Available at: https://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

World Development Indicators, WDI. Available at: https://databank.worldbank.org/home.aspx

Derzhavna sluzhba statystyky Ukrainy. Available at: https://www.ukrstat.gov.ua/operativ/oper_new.html

Statista. Available at: https://www.statista.com/statistics/871513/worldwide-data-created/?srsltid=AfmBOoqhb9XQqYAixPbGlPD03yXIzp8hnBva2EOwiiFQX7gb6YYAtEQa

Published

2025-11-24

How to Cite

Akulov, O., & Radionova, I. (2025). APPLYING ARTIFICIAL NEURAL NETWORKS TO ANALYZE THE IMPACT OF ICT-SECTOR ON THE ECONOMIC GROWTH IN UKRAINE. Scientific Journal of Yuriy Fedkovich Chernivtsi National University. Economics, (2), 3–14. https://doi.org/10.32782/ecovis/2025-2-1